Engineering Enzymes for Green Chemical Synthesis

Evan Reynolds

Associate Professor

Department of Chemistry & Physics

Campbell University

Fine chemical and pharmaceutical production is inefficient

Environmental impact of chemical industries

<u>Industry</u>	<u>E-factor</u> (kg waste / kg product)
Oil refining	< 0.1
Bulk chemicals	< 1-5
Fine chemicals	5 - > 50
Pharmaceuticals	25 - > 100

Qualities of an ideal "green" catalyst

The power of enzyme catalysis

Enzymes are biological catalysts

Display exquisite rate enhancements

Perform under mild reaction conditions

Highly selective

Evolvable

Challenge:

How do we introduce new reactions to enzymes?

Example: uroporphyrinogen decarboxylase

Rate enhancement ~ 10^{17}

Cofactors expand enzymatic chemistry

Cobalamin, Vitamin B₁₂

Thiamine-dependent enzymes are versatile catalysts

In nature, thiamine-dependent enzymes catalyze a variety of carbon-carbon bond forming or breaking reactions

Chemistry inspired biocatalysis

Synthetic chemists have developed N-heterocyclic carbene catalysts that are similar to thiamine but catalyze many more reactions

Flanigan, D. M.; Romanov-Michailidis, F.; White, N. A.; Rovis, T. Chem. Rev. 2015, 115 (17), 9307–9387.

Hoyos, P., Sinisterra, J.-V., Molinari, F., Alcantara, A. R., & Dominguez de Maria, P. Accts. Chem. Res. 2010, 43(2), 288–299.

Engineering the thiamine-dependent enzyme SucA for benzoin condensation

Target: E1 subunit of the α-ketoglutarate dehydrogenase complex (SucA)

Thiamine-dependent enzyme from central metabolism

In nature, catalyzes decarboxylation of α -ketoglutarate

SucA variants for benzoin synthesis

Compared activity of unmutated wild type (WT) SucA to several mutants in the "native" reaction and in benzoin synthesis

Relative Product Formation in Enzymatic Reactions

Pushing the limits of biocatalysis with SucA

Can we engineer the enzyme to make even more complex products selectively?

Acknowledgements

Special thanks to the Reynolds lab students, past and present:

Katherine Darrigrand Haley Debnam Stephanie Bryant Jeremy Walker Matthew Pare Ryan Peterson Angelique Girard Jose Perez-Hernandez Kyra Gustus-Daniels Alex Stroud Peter Robbins Mable Hinshaw Shane Galvin Wyatt Welton Charlie Creed Sumiya Bibi Inayat Zulfiqar Monica Gonzalez-Garro Nicholas Woodlief Rachel Van Winkle

Thanks to the Campbell Chemistry & Physics Department, Howard Research Fellows Program, NCAS Yarbrough Award, NCICU Undergraduate Research Award, ACS Project SEED, and NSF LEAPS-MPS Award #2417808

